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HELMUT PRODINGER

ABSTRACT. A recent analysis of returns and hills of generalized Dyck paths is carried over to the
language of t-ary trees, from which, by explicit bivariate generating functions, all the relevant
results follow quickly and smoothly. A conjecture about the (discrete) limiting distribution of
hills is settled in the affirmative.

1. INTRODUCTION

In the recent paper [2], generalized Dyck paths where investigated: they have an up-step
u = (1,1), a down-step d = (1,−t + 1), where t ≥ 2, start at the origin, end on the x-axis,
and never go below the x-axis. A general reference for such lattice paths is [1].

Two parameters were investigated (with the help of Riordan arrays): the number of returns
to the x-axis (the origin itself does not count), and the number of (contiguous) subpaths of
the form ut−1d, that sit on the x-axis.

In the present note, I would like to emphasize that the language of trees, in particular
t-ary trees, is favorable here, because it allows to write the relevant generating functions
with ease, without any mentioning of Riordan arrays, and also leads to settling a conjecture
mentioned in [2].

The family of t-ary trees is recursively described: such a tree is either an external node
(depicted as a square), or a root (an internal node, depicted as a circle), followed by sub-
trees (in this order) T1, . . . , Tt . For this and many other concepts, we refer to the universal
book [3]. The generating function T (z) =

∑

n≥0 anzn, where an is the number of trees of
size n (n internal nodes) is, following the recursive definition, given by T (z) = 1+ zT t(z).
Extracting coefficients is efficiently done by setting z = u/(1+ u)t , thus T = 1+ u, and con-
tour integration; the method is closely related to the Lagrange inversion formula. Here is an
example:

[zn]T k(z) =
1

2πi

∮

dz
zn+1

T k(z)

=
1

2πi

∮

du(1+ u− tu)(1+ u)t(n+1)

(1+ u)t+1un+1
(1+ u)k

= [un](1+ u− tu)(1+ u)tn+k−1
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=
�

tn+ k− 1
n

�

− (t − 1)
�

tn+ k− 1
n− 1

�

=
k
n

�

tn+ k− 1
n− 1

�

.

This produces in particular the numbers an =
1
n

� tn
n−1

�

.
There is a natural bijection between the family of generalized Dyck paths and the family

of t-ary trees. It is based on the decomposition of paths according to the first return to the
x-axis. The first part of the Dyck paths is (recursively) responsible for the first t−1 subtrees,
and the rest of the Dyck path for the remaining t-th subtree. It is then apparent that the
number of down-steps is the same as the number of internal nodes of the associated tree.
Here is the situation depicted for t = 3.

· · ·
· · ·

· · ·

T1 T2 T3

FIGURE 1. The decomposition of generalized Dyck paths leading (recursively)
to a ternary tree with subtrees T1, T2, T3.

Now a little reflection convinces us that the number of returns is the same as the number
of (internal) nodes on the rightmost path from the root to the rightmost leaf. And, further:
the number of hills is the number of nodes on this rightmost path with the property that its
first t − 1 subtrees are empty (are the empty subtree, consisting only of an external node).
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FIGURE 2. A ternary tree with 10 (internal) nodes. It has 6 returns and 3 hills.
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In what follows, we will analyze these parameters in terms of t-ary trees.
In [2], the negative binomial distribution is defined via

P{Y = k}=
�

k− 1
r − 1

�

pr(1− p)k−r .

This is somewhat in contrast with [3] and Wikipedia, as it is a shifted version, and the roles
of p and 1− p are interchanged from the more common definitions. Nevertheless, we will
stick to this definition here, for the reason of comparisons. The numbers r and p are called
the parameters of the distribution.

2. THE NUMBER OF RETURNS ON t-ARY TREES

Let F(z, v) be the generating function with respect to the size and the number of returns,
i. e., the coefficient of znvk is the number trees with n internal nodes and k returns. Then we
find the equation

F(z, v) = 1+ zT t−1(z)vF(z, v).

Since zT t−1(z) = T (z)−1
T (z) , this leads to the explicit form

F(z, v) =
1

1− v T (z)−1
T (z)

.

Therefore

[vk]F(z, v) =
�T (z)− 1

T (z)

�k
=
� u

1+ u

�k
.

Furthermore

[zn][vk]F(z, v) = [zn]
� u

1+ u

�k

=
1

2πi

∮

dz
zn+1

� u
1+ u

�k

=
1

2πi

∮

du(1+ u− tu)(1+ u)t(n+1)

un+1(1+ u)t+1

� u
1+ u

�k

= [un−k](1+ u− tu)(1+ u)tn−1−k

=
�

tn− 1− k
n− k

�

− (t − 1)
�

tn− 1− k
n− 1− k

�

=
k
n

�

tn− 1− k
n− k

�

.

Division by an gives the probability that a random tree of size n has k returns:

pk(n) = k

�tn−1−k
n−k

�

� tn
n−1

� →
k(t − 1)2

tk+1
, fixed k, n→∞.
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In order to compute the d-th (factorial) moment, we evaluate

∂ d

∂ vd
F(z, v)

�

�

�

v=1
= d!T (z)(T (z)− 1)d = d!(1+ u)ud .

Furthermore,

[zn]
∂ d

∂ vd
F(z, v)

�

�

�

v=1
= [un−d]d!(1+ u− tu)(1+ u)tn

= d!
�

tn
n− d

�

− d!(t − 1)
�

tn
n− 1− d

�

=
(td + 1)d!

n− d

�

tn
n− 1− d

�

.

For the expected value, we consider d = 1 and divide by an, with the result

(t + 1)n
n(t − 1) + 2

∼
t + 1
t − 1

.

The second factorial moment is obtained via d = 2, with the result

2(2t + 1)n(n− 1)
(tn− n+ 3)(tn− n+ 2)

∼
2(2t + 1)
(t − 1)2

.

This leads to the variance:

2
n(t − 1)(n− 1)(tn+ 1)
(tn− n+ 3)(tn− n+ 2)2

∼
2t

(t − 1)2
.

This section reproved and extended the results of [2] on the number of returns. Note that
the quantity k(t−1)2

tk+1 is P{Y = k + 1}, where Y is a random variable, distributed according to
the negative binomial distribution for r = 2 and p = t−1

t .

3. THE NUMBER OF HILLS ON t-ARY TREES

Let G(z, v) be the generating function with respect to the size (variable z) and the number
of hills (variable v). Then we find the recursion

G(z, v) = 1+ zT t−1(z)G(z, v) + z(v − 1)G(z, v).

Since zT t−1(z) = 1− 1/T (z), we find the explicit solution

G(z, v) =
T (z)

1− (v − 1)zT (z)
=
∑

k≥0

(v − 1)kzkT k+1(z).

By d-fold differentation, followed by setting v = 1, we get the generating function of the d-th
factorial moments (apart from normalization):

d!zd T d+1(z).

Furthermore,

[zn]d!zd T d+1(z) =
d!

2πi

∮

dz
zn+1−d

T d+1(z)
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=
d!

2πi

∮

du(1+ u− tu)(1+ u)t(n−d)+d

un+1−d

= d![un−d](1+ u− tu)(1+ u)t(n−d)+d

= d!
�

tn− (t − 1)d
n− d

�

− d!(t − 1)
�

tn− (t − 1)d
n− 1− d

�

=
(d + 1)!

n− d

�

tn− (t − 1)d
n− 1− d

�

.

For d = 1, this leads to the expected value:

n
� tn

n−1

�

2
n− 1

�

tn− t + 1
n− 2

�

=
2(tn− t + 1)!(tn− n+ 1)!
t(tn− 1)!(tn− n− t + 3)!

→
2(t − 1)t−2

t t−1
.

The variance evaluates to

n
� tn

n−1

�

6
n− 2

�

tn− 2t + 2
n− 3

�

+
2(tn− t + 1)!(tn− n+ 1)!
t(tn− 1)!(tn− n− t + 3)!

−
�

2(tn− t + 1)!(tn− n+ 1)!
t(tn− 1)!(tn− n− t + 3)!

�2

,

which we do not attempt to simplify any further.
Writing

G(z, v) =
∑

n,k

gn,kznvk,

it is possible to derive an explicit form for the coefficients gn,k, but they are not as nice as the
corresponding quantities in the previous section:

G(z, v) =
∑

k≥0

(v − 1)kzkT k+1(z)

=
∑

n≥0

zn
∑

k≥0

(v − 1)k
k+ 1
n− k

�

tn− (t − 1)k
n− 1− k

�

=
∑

n≥0

zn
∑

k≥0

∑

0≤ j≤k

�

k
j

�

v j(−1)k− j k+ 1
n− k

�

tn− (t − 1)k
n− 1− k

�

.

This leads to

gn, j =
∑

j≤k≤n

�

k
j

�

(−1)k− j k+ 1
n− k

�

tn− (t − 1)k
n− 1− k

�

.

The limiting distribution of gn, j/an, for j fixed, must thus be determined in a different way.
We need a crash course of asymptotic tree enumeration here; all this can be found in

[3], but compare also [4], in particular the notion of simply generated families of trees. The
procedure that we describe here is closely related to the discussion in [3], Section IX-3, where
very similar parameters were analyzed.

We start from u = zφ(u), with φ(u) = (1 + u)t . The quantity τ is determined via the
equation φ(τ) = τφ′(τ). In our case this leads to τ = 1

t−1 . Then there is the quantity
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ρ = τ
φ(τ) , which here evaluates to

ρ =
(t − 1)t−1

t t
.

Then one knows by general principles that the function u(z) has a square-root singularity
around z = ρ, with the local expansion

u∼ τ−
√

√ 2τ
ρφ′′(τ)

Æ

1− z/ρ.

This is here

T (z) = 1+ u∼
t

t − 1
−
√

√ 2t
(t − 1)3

Æ

1− z/ρ.

This expansion will now be used inside of G(z, v), with the result (Maple):

G(z, v)∼ a−
p

2t2t−3/2

(t − 1)3/2
�

t t−1 + (t − 1)t−2 − (t − 1)t−2v
�2

Æ

1− z/ρ,

with a being an unimportant constant. Note that
p

2t2t−3/2

(t − 1)3/2
�

t t−1 + (t − 1)t−2 − (t − 1)t−2v
�2

�

�

�

�

v=1

=

√

√ 2t
(t − 1)3

.

Thus, the limiting distribution is given by the probability generating function

t2t−2

�

t t−1 + (t − 1)t−2 − (t − 1)t−2v
�2 =

t2t−2

(t t−1+(t−1)t−2)2
�

1− (t−1)t−2

t t−1+(t−1)t−2 v
�2 .

The coefficient of vk in it given by

(k+ 1)
t2t−2(t − 1)(t−2)k

(t t−1 + (t − 1)t−2)k+2
.

which is P{Y = k+ 2}, for a random variable Y , which follows the negative binomial distri-
bution with parameters r = 2 and p = t t−1

t t−1+(t−1)t−2 , as conjectured in [2].
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